Fachhochschule Hannover Fachbereich Maschinenbau Prof. Dr. U. J. Schrewe

Radioökologie und Strahlenschutz WS12/13

26.11.12 Zeit: 90 min

Hilfsmittel: Anlagen, selbsterstellte Formelsammlung, Nuklidkarte, Periodensystem

Name:......Mtrl. Nr:......Mtrl. Nr:.....

- 1. a. Aus welchen Elementarteilchen ist ein Atom aufgebaut?
 - b. Beschreiben Sie den Atomaufbau und die Grundzüge des Bohrschen Atommodells.
 - c. Was versteht man unter "Elektronenschalen"? Wie werden sie bezeichnet?
 - **d.** Wie viele Elektronen können die verschiedenen Schalen aufnehmen?
- Betrachten Sie das Aluminium Isotop ²⁷Al:
 - **a.** Berechnen Sie die (exakte) Masse m in den Einheiten 1 kg und 1 GeV/c^2 .

Massenexcess des ²⁷Al
$$m_{exc} (13,27) = m_{exc} (^{27}Al) = -17196,658 keV / c^2$$

$$u = 931,494043 MeV / c^2$$

$$m(^{27}Al) = m(13,27) = m_{exc} (13,27) - 27 \cdot u$$

$$m(^{27}Al) = m(13,27) = 25133,14525 MeV / c^2$$
Mit
$$1 eV = 1,602177733 \cdot 10^{-19} C$$
und
$$c = 299792458 ms^{-1}$$
folgt:
$$m(^{27}Al) = m(13,27) = 4,480 \cdot 10^{-26} kg$$

b. Berechnen Sie die Bindungsenergie B.

$$B(Z,A) = (Z \cdot m_{exc}(1,1) + N \cdot m_{exc}(0,1) - m_{exc}(Z,A)) \cdot c^2$$

$$B(Z,A) = 224,951714 \, MeV$$

c. Berechnen Sie die Bindungsenergie pro Nukleon B/A.

$$B/A = \frac{B(13,27)}{27} = \frac{224,951714}{27} MeV = 8,332 MeV$$

- **d.** Schätzen Sie die Atomgröße. Radius: $R_{at} \cong 0,1 nm$
- e. Wie ändert sich die Atomkerngröße als Funktion der Atommassenzahl? Schätzen Sie den Atomkernradius für ²⁷Al. $R_{\nu} = 1.3 \, \text{fm} \cdot \sqrt[3]{A}$

$$R_{K_{.}^{27}Al} = 1,3 \, \text{fm} \cdot \sqrt[3]{27} = 3,9 \, \text{fm}$$

- $R_{K,^{27}Al} = 1,3 \text{ fm} \cdot \sqrt[3]{27} = 3,9 \text{ fm}$ **f.** Beschreiben Sie den Zerfall des ²⁷Mg zum ²⁷Al an Hand des Zerfallsschemas im Anhang.
- Erklären Sie folgende Begriffe:
 - a. Isotope, Isobare, Isotone.
 - **b.** α-, β-, γ-Strahlung. Welche Umwandlungsreaktionen beschreiben den α-, β^- , β^+ und den EC-Zerfall (EC-electron capture). Was gilt für die Strahlungsenergien und Q-Werte?
 - c. Erklären Sie die Begriffe "Spontanspaltung", "neutroneninduzierte Spaltung" und "Spaltbarriere"?
- a. Beschreiben Sie die Funktionsweise eines NaJ-Szintillationsdetektors und eines Ge-Halbleiterdetektors als Nachweisgerät für Röntgen- und γ-Strahlung.
 - **b.** Erläutern Sie das Prinzip einer Dicken- und Dichtemessung mit Hilfe von Röntgen- und γ-Strahlung.
 - c. Erklären Sie die prinzipielle Funktionsweise eines des Proportionalzählrohrs.
 - **d.** Zum Neutronennachweis verwendet man oft ³He Gas gefüllte Proportionalzählrohre: Langsame Neutronen können mit ³He eine Kernreaktion eingehen, bei der ³H und ¹H als Endprodukte entstehen. Berechnen Sie die dabei frei werdende Energie Q.

$${}_{2}^{3}He_{1} + {}_{0}^{1}n_{1} \rightarrow {}_{1}^{3}H_{2} + {}_{1}^{1}H_{0} + Q$$

$$Q = (m_{exc}(2,3) + m_{exc}(0,1) - m_{exc}(1,3) - m_{exc}(1,1)) \cdot c^{2}$$

$$Q = (14931, 2148 + 8071, 3171 - 14949, 806 - 7288, 9709) \cdot keV$$

 $Q = 763, 755 \, keV$

- **e.** Die ¹H und ³H Ionen (in 4d.) werden im ³He Gas des Zählrohres abgebremst. Wie etwa sieht das Impulshöhenspektrum aus, dass nach 4d. zu erwarten ist?
- 5. Der Hörsaal A210 befindet sich über dem Bestrahlungsbunker des Labors. Man nehme an, dass beim Messbetrieb mit einer 60 Co Strahlungsquelle Personen im Hörsaal A210 mindestens R = 3m von der Quelle entfernt sind. Zusätzlich befindet sich eine z = 72 cm dicke Betondecke (engl. ordinary concrete) zwischen Labor und Hörsaal. Die 60 Co Quelle hatte am 09.10.1979 eine Aktivität von 17 10^{10} s⁻¹. Im Anhang finden Sie ein Zerfallsschema des 60 Co. Betrachten Sie nur die beiden γ-Quanten höchster Energie (1173 keV und 1332 keV).
 - **a.** Wie groß ist die Zahl der γ -Quanten der Energie 1173 keV und 1332 keV, die unter Berücksichtigung des Abstands R und der Abschirmungswirkung der Betondecke der Dicke z im Hörsaal in einer Bezugsfläche von 1 m² in der Zeit von 1 s zu erwarten sind.
 - **b.** Wie groß war die ursprüngliche Masse des ⁶⁰Co in der Strahlenquelle zum Referenzdatum?
- 7. In einem Vorlesungsversuch wurde die Schwächung von γ -Strahlung der Energie $E_{\gamma}=662\,keV$ ($^{137}\mathrm{Cs}$) in Aluminium und Blei untersucht. Die Untergrundzählrate betrug 0 Ereignisse in einer Messzeit von 10 s. Ohne Absorber wurden im Mittel 9334 Ereignisse in 10 s gemessen.

Bestimmen Sie den Schwächungskoeffizienten μ , den Massenschwächungskoeffizienten $\frac{\mu}{\rho}$

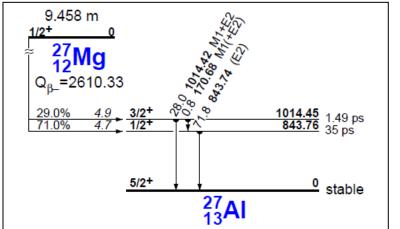
und den Wirkungsquerschnitt σ .

(Dichte: Aluminium $\rho_{Al} = 11.3 g \text{ cm}^{-3}$, Blei $\rho_{Pb} = 11.3 g \text{ cm}^{-3}$;

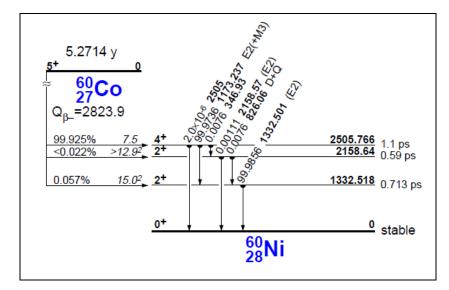
Molmasse: Aluminium $A_{Al} = 26,982 \, g \, mol^{-1}$, Blei $A_{Pb} = 207,2 \, g \, mol^{-1}$;

Avogadro Konstante: $N_A = 6,02214129 \cdot 10^{-23} \ g \ mol^{-1}$)

Messdaten:


	Absorbermaterial				
Absorberdicke	Aluminium	Blei			
z / cm	$N/10 \mathrm{s}$	N / 10 s			
0,4		5808			
0,8	7817				
3,6		164			
10.0	1391				

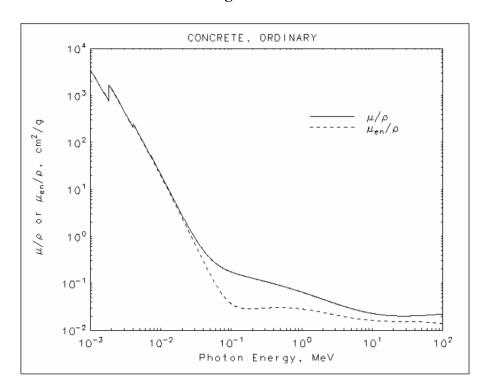
Anhang:


A1. Zerfallsschema von ²⁷Mg:

γ (²⁷AI) from ²⁷Mg (9.458 m) β decay < for I γ% multiply by 1.00>
170.685 († γ0.8 1) M1(+E2): δ=+0.05 6
843.743 († γ71.84) (E2)
1014.423 († γ28.04) M1+E2: δ= -0.351 12

Quelle: http://www.wiley-vch.de/books/info/0-471-35633-6/toi99/toi99cd.pdf

A2. Zerfallsschema von ⁶⁰Co:



 γ (^{60}Ni) from 60 Co (5.2714 y) $β^-$ decay < for $l\gamma\%$ multiply by 1.0> 346.937 (\dagger ,0.0076.5) 826.063 (\dagger ,0.0076.8) D+Q: δ=+0.93 1173.2374 (\dagger ,99.9736.7) E2(+M3): $δ^+$ -0.0025.22 1332.5015 (\dagger ,99.9856.4) (E2) 2158.57 10 (\dagger ,0.00111 18) (E2) 2505 (\dagger ,2.0×10⁻⁶.4)

Quelle: http://www.wiley-vch.de/books/info/0-471-35633-6/toi99/toi99cd.pdf

Anlage A3 Mass attenuation coefficient / Massenschwächungskoeffizient

_	,
E	μ/ρ
MeV	cm²/g
1,00E-02	2,05E+01
1,50E-02	6,35E+00
2,00E-02	2,81E+00
3,00E-02	9,60E-01
4,00E-02	5,06E-01
5,00E-02	3,41E-01
6,00E-02	2,66E-01
8,00E-02	2,01E-01
1,00E-01	1,74E-01
1,50E-01	1,44E-01
2,00E-01	1,28E-01
3,00E-01	1,10E-01
4,00E-01	9,78E-02
5,00E-01	8,92E-02
6,00E-01	8,24E-02
8,00E-01	7,23E-02
1,00E+00	6,50E-02
1,25E+00	5,81E-02
1,50E+00	5,29E-02
2,00E+00	4,56E-02
3,00E+00	3,70E-02
4,00E+00	3,22E-02
5,00E+00	2,91E-02
6,00E+00	2,70E-02
8,00E+00	2,43E-02
1,00E+01	2,28E-02
1,50E+01	2,10E-02
2,00E+01	2,03E-02

Dichte: $\rho_{Concrete} = 2.3 g \text{ cm}^{-3}$;

 $\textbf{Quelle:} \ \underline{\text{http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html}}$

N =		0	1	2	3	4	5	6	7	8	9	10	11	12	N =	П
n	0		8071,3171						2000		2 /	(7 4)	4+1+-2	in Inal/	n	0
Н	1	7288,9705	13135,72158	14949,806	25901,518	32892,44	41863,757	49135#	wass	excess =	$m_{\rm exc}c^2 = ($	m(Z,A) - A	A * u) *c	ın kev	Н	1
He	2		14931,21475	2424,91565	11386,233	17595,106	26101,038	31598,044	40939,429	48809,203					He	2
Li	3	28667#	25323,185	11678,886	14086,793	14908,141	20946,844	24954,264	33050,581	40797,31	50096#				Li	3
Ве	4		37996#	18374,947	15770,034	4941,672	11347,648	12606,67	20174,064	25076,506	33247,823	39954,498	49798#	57678#	Ве	4
В	5		43603#	27868,346	22921,49	12415,681	12050,731	8667,931	13368,899	16562,166	23663,683	28972,278	37081,686	43770,816	В	5
С	6			35094,06	28910,491	15698,682	10650,342	0	3125,01129	3019,89305	9873,144	13694,129	21038,832	24926,178	С	6
N	7				38800,148	24303,569	17338,082	5345,481	2863,41704	101,43805	5683,658	7871,368	13114,466	15862,129	N	7
0	8					32047,954	23112,428	8007,356	2855,605	-4737,00141	-808,813	-781,522	3334,87	3797,462	0	8
F	9		Mass exce	se values	in keV		32658#	16775,372	10680,254	1951,701	873,701	-1487,386	-17,404	-47,551	F	9
Ne	10		Mass excess values in keV				23996,462	16460,901	5317,166	1751,44	-7041,93131	-5731,776	-8024,715	Ne	10	
N =		0	1	2	3	4			24189,968	12926,808	6847,719	-2184,161	-5182,436	-9529,85358	Na	11
							5		33040,092	17570,348	10910,506	-396,963	-5473,766	-13933,567	Mg	12
N =		13	14	15	16	17		6		26119#	18183#	6769,57	-56,946	-8916,172	AI	13
				u = 1,660	538 86 10	⁻²⁷ kg	18		7	32164#	23772#	10754,673	3824,318	-7144,632	Si	14
В	5	52322#	59364#	$uc^2 = 931$,494 043 N	1eV		19		8	31997#	18872#	10973#	-717,03	Р	15
С	6	32420,666	37557,61	45960#	53281#				20		9	25970#	17543#	4073,203	S	16
N	7	21765,11	25251,164	32038,675	38396#	47543#	56504#			21		10	26557#	13143#	CI	17
0	8	8062,906	9284,152	14612,96	19070,4	27442#	35713#	44954#	53850#		22		11	20083#	Ar	18
F	9	2793,378	3329,747	7559,527	11272,706	18271,772	24926,86	33226#	40296#	48903#	56289#	23	24	12	N =	
Ne	10	-5154,045	-5951,521	-2108,075	429,611	7069,949	11244,601	18057,881	23102,025	30842#	37278#	45997#	53121#	25	N =	
Na	11	-8418,114	-9357,818	-6862,316	-5517,436	-989,247	2665,004	8361,09	12654,768	19064,478	24889,293	32761#	39582#	47953#	Na	11
Mg	12	-13192,826	-16214,582	-14586,651	-15018,641	-10619,032	-8910,672	-3217,38	-954,781	4894,07	8808,603	16152#	21424#	29249#	Mg	12
Al	13	-12210,309	-17196,658	-16850,441	-18215,322	-15872,419	-14953,628	-11061,966	-8529,377	-2932,495	-130,19	5781,974	9946,326	16050,594	Al	13
Si	14	-12384,301	-21492,79678	-21895,046	-24432,928	-22949,006	-24080,907	-20492,662	-19956,77	-14360,307	-12482,507	-6579,998	-4067,274	1928,205	Si	14
Р	15	-7158,753	-16952,626	-20200,575	-24440,885	-24305,218	-26337,486	-24557,669	-24857,74	-20250,977	-18994,145	-14757,82	-12873,735	-8106,838	Р	15
S	16	-3159,582	-14062,532	-19044,648	-26015,697	-26585,994	-29931,788	-28846,356	-30664,075	-26896,36	-26861,197	-23162,245	-22866,568	-19019,105	S	16
CI	17	4443#	-7067,165	-13329,771	-21003,432	-24439,776	-29013,54	-29521,857	-31761,532	-29798,097	-29800,203	-27557,81	-27307,189	-24912,99	CI	17
Ar	18	11293#	-2200,204	-9384,141	-18377,217	-23047,411	-30231,54	-30947,659	-34714,551	-33242,011	-35039,89602	-33067,467	-34422,675	-32009,808	Ar	18
K	19	20418#	6763#	-1481#	-11168,9	-17426,171	-24800,199	-28800,691	-33807,011	-33535,205	-35559,074	-35021,556	-36593,239	-35809,606	K	19
Ca	20		13153#	4602#	-6439,359	-13161,76	-22059,22	-27274,4	-34846,275	-35137,759	-38547,072	-38408,639	-41468,479	-40811,95	_	
Sc	21			13898#	2841#	-4937#	-14168,021	-20523,228	-28642,392	-32121,239	-36187,929	-37816,093	-41067,792	-41757,115	Sc	21
Ti	22				9101#	1500#	-8850,275	-15700#	-25121,552	-29321,103	-37548,459	-39005,737	-44123,422	-44932,394	Ti	22
V	23					10330#	-205#	-8169#	-18024#	-24116,38	-31879,629	-37073,013	-42002,051	-44475,385	V	23
N =		13	14	15	16	17	18	19	20	21	22	23	24	25	N =	

Mass Excess Table: G. Audi, A.H. Wapstra and C. Thibault, http://ie.lbl.gov/mass/2003AWMass_3.pdf Anlage 4:

5a. Massenschwächungskoeffizient für 1,173 MeV und 1,332 MeV:

Logarithmische Interpolation:

E/MeV	mü/rho	InE	In(mü/rho)		
1,000	6,50E-02	0,000	-2,733		
1,250	5,81E-02	0,223	-2,846		
1,500	5,29E-02	0,405	-2,939		
1,173	0,05999	0,15956457	-2,813614972		
1,332	0,05623	0,28668157	-2,87826525		

Massenschwächungskoeffizient:

$$\left(\frac{\mu}{\rho}\right)_{E=1,173MeV} = 0,05999 \, cm^2 g^{-1}$$

$$\left(\frac{\mu}{\rho}\right)_{E=1,332MeV} = 0,05623 \, cm^2 g^{-1}$$

 $\mu_{E=1.173MeV} = 0.13794 \, cm^2 g^{-1}$ Schwächungskoeffizient:

$$\mu_{E=1,332MeV} = 0,12933 \, cm^2 g^{-1}$$

 $T_{1/2} = 5,2714y$ Halbwertszeit der Quelle: Referenzdatum der Quelle: 09.10.1979

Aktivität am Referenzdatum: $A_0 = 1,70 \cdot 10^{11} s^{-1}$

Aktuelles Datum: 26.11.2012

 $\Delta T = 12101d = 33,133y$ Zeitdifferenz:

Aktuelle Aktivität des ⁶⁰Co:
$$A = A_0 \cdot e^{-\frac{\ln(2)\Delta T}{T_{1/2}}} = 2,178 \cdot 10^9 \, s^{-1}$$

Aus dem Zerfallsschema kann man die relativen Intensitäten pro Zerfall ablesen. Die

Werte lauten:
$$I_{rel,1173keV} = 0,999736$$

 $I_{rel,1332keV} = 0,999856$

Multipliziert man I_{rel} mit A, so erhält man die aktuellen Intensitäten der von der Quelle insgesamt ausgesandten γ-Quanten:

$$I_{1173keV} = 2,179 \cdot 10^9 \, s^{-1}$$
$$I_{1332keV} = 2,179 \cdot 10^9 \, s^{-1}$$

Beide γ-Strahlungen verteilen sich auf den gesamten Raumwinkel. Gesucht ich die Zahl der Quanten pro 1 m² im Abstand von 3 m. Dazu muss die Kugeloberfläche für R = 3m

bestimmt werden.
$$O = 4\pi \cdot R^2 = 4\pi \cdot 9 \, m^2 = 113,097 \, m^2$$

bestimmt werden.
$$O = 4\pi \cdot R^2 = 4\pi \cdot 9 \, m^2 = 113,09$$

Intensität pro 1 m² in 3m Abstand: $\left(\frac{dI}{dA}\right)_{1173keV} = 1,926 \cdot 10^7 \, m^{-2} s^{-1}$

$$\left(\frac{dI}{dA}\right)_{1332keV} = 1,927 \cdot 10^7 \, m^{-2} s^{-1}$$

Für beide γ-Quanten muss die Schwächung in der Betondecke von 72 cm Dicke berechnet

Intensität pro 1 m² in 3m Abstand mit Schwächung in 72 cm Beton:

$$\left(\frac{dI}{dA}\right)_{1173keV,Beton} = 1,926 \cdot 10^7 \ m^{-2} s^{-1} \cdot e^{-0,13797 cm^{-1} \cdot 72 cm}$$

$$\left(\frac{dI}{dA}\right)_{1173keV,Beton} = 934,296 m^{-2} s^{-1}$$

$$\left(\frac{dI}{dA}\right)_{1173keV,Beton} = 934,296 \, m^{-2} \, s^{-1}$$

$$\left(\frac{dI}{dA}\right)_{1332keV,Beton} = 1,927 \cdot 10^7 \, m^{-2} s^{-1} \cdot e^{-0,12933cm^{-1} \cdot 72cm}$$

$$\left(\frac{dI}{dA}\right)_{1332keV,Beton} = 1740,324 \, m^{-2} s^{-1}$$

Zahl der 1,173 MeV und 1,332 MeV Quanten pro 1 m² und 1 s in 3 m Abstand mit 72 cm dicker Betonabschirmung im Zwischenraum

$$\left(\frac{dI}{dA}\right)_{ges,Beton} = 2674 \, m^{-2} s^{-1}$$

5b. Aktivität zum Bezugszeitpunkt:

$$A_0 = 1,70 \cdot 10^{11} \, s^{-1}$$

Zahl der Atome:

$$N_0 = \frac{A_0}{-\lambda} = \frac{A_0 \cdot T_{1/2}}{-\ln 2}$$

$$N_0 = \frac{-1,7010^{11} \, s^{-1} \cdot 5,2714 \cdot 365,25 \cdot 86400 \, s}{-\ln 2}$$

$$N_0 = 4,0799 \cdot 10^{19}$$

Masse:

$$m_0 = \frac{A_{60}_{Co}}{N_A} \cdot N_0 = \frac{60 \, g \, mol^{-1}}{6.0221 \cdot 10^{23} \, mol^{-1}} \cdot 4,0799 \cdot 10^{19}$$

$$m_0 = \frac{A_{60}}{N_A} \cdot N_0 = 4,06 \, mg$$

7. Schwächungskoeffizient

$$\mu = \frac{\ln\left(\frac{N(z_{2}) - N_{u}}{N_{0}}\right) - \ln\left(\frac{N(z_{1}) - N_{u}}{N_{0}}\right)}{z_{2} - z_{1}}$$

Aluminium

$$\mu_{Al} = \frac{\ln\left(\frac{1391 - 0}{9334}\right) - \ln\left(\frac{7817 - 0}{9334}\right)}{(10, 0 - 0, 8) cm} = -0,188 cm^{-1}$$

Blei

$$\mu_{Pb} = \frac{\ln\left(\frac{164 - 0}{9334}\right) - \ln\left(\frac{5808 - 0}{9334}\right)}{(3,6 - 0,4)cm} = -1,115cm^{-1}$$

Massenschwächungskoeffizient:

Aluminium

$$\left(\frac{\mu}{\rho}\right)_{Al} = 0,0703 \, cm^2 \, g^{-1}$$

Blei

$$\left(\frac{\mu}{\rho}\right)_{Ph} = 0.0986 \, cm^2 \, g^{-1}$$

Wirkungsquerschnitt:

Aluminium

$$\sigma_{Al} = \frac{A_{mol}}{N_A} \cdot \frac{\mu}{\rho} = \frac{26,982 \, g \, mol^{-1}}{6,022 \cdot 10^{23} \, mol^{-1}} \cdot 0,0703 \, cm^2 g^{-1}$$

$$\sigma_{Al} = 3,1499 \cdot 10^{-24} \, cm^2 = 3,1b$$

Blei

$$\sigma_{Al} = \frac{A_{mol}}{N_A} \cdot \frac{\mu}{\rho} = \frac{207, 2 g \, mol^{-1}}{6,022 \cdot 10^{23} \, mol^{-1}} \cdot 0,0986 \, cm^2 g^{-1}$$

$$\sigma_{Al} = 3,3941 \cdot 10^{-23} \, cm^2 = 33,9 \, b$$