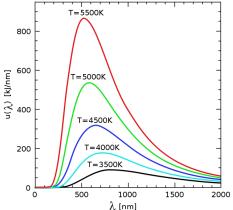
Fachhochschule Hannover Fachbereich Maschinenbau Prof. Dr. U. J. Schrewe


Radioökologie und Strahlenschutz WS14/15

Zeit: 90 min Hilfsmittel: diverse Anlagen

24.11.14

Name:V	Vorname:	.Mtrl.	Nr:
--------	----------	--------	-----

- 1. Nennen Sie einige Grunddaten der Atom: Aufbau des Atoms Größe und Volumen der Atome, Größe und Volumen des Atomkernes, Dichte des Atomkerns.
- **2.** Was versteht man unter der Atommassenkonstante u? Welchen Zahlenwerte und welche Einheiten hat u?
- **3.** Welche Masse in der Einheit 1 kg hat (näherungsweis) ein Heliumatom?
- 4. Beschreiben Sie das Strahlungsspektrum "schwarzer Körper"? Skizzieren Sie die spektrale Intensität $dI/d\lambda$ als Funktion der Wellenlänge λ .

5. Ordnen Sie die genannten elektromagnetischen Strahlungsarten nach <u>aufsteigender</u>
Frequenz bzw. <u>absteigender Wellenlänge</u> (es reicht, Kurzbezeichnungen zu verwenden).

Radarstrahlung (RA), sichtbares Licht (SL), Röntgenstrahlung(XR), γ-Strahlung (γ), IR-Strahlung (IR), UKW-Radiostrahlung (UKW), Mikrowellen (MW), UV-Strahlung (UV), langwellige Radiostrahlung (LW).

$$LW < UKW < RA = MW < IR < SL < XR < \gamma$$

- **6.** Was bedeuten die Begriffe "Isotope", "Isobare" und "Isotone"?
- 7. Wie ist die "relative Atommasse" A_{rel} definiert? Welche relative Atommasse hat das Element Gallium mit natürlicher Isotopenzusammensetzung? Bestimmen Sie die Anzahl der Galliumatome in einer Masse von 1 kg.

$$A_{rel} = \frac{m_{Atom}}{u}$$

$$A_{rel} (Ga) = 69,723 g mol^{-1}$$
1 kg enthält $n = \frac{1kg}{69,723 \cdot 10^{-3} kg mol^{-1}} = 14,3425 mol$

$$N = N_A \cdot n = 6,022 \cdot 10^{23} mol^{-1} \cdot 4,20117 mol = 8,6370 \cdot 10^{24}$$

8. Wie ist die Größe "mass excess" $m_{\text{exc}}(Z,A) \cdot c^2$ definiert? In welcher Einheit wird die Größe üblicherweise in Tabellen angegeben?

$$m_{exc}(Z,A) \cdot c^2 = (m(Z,A) - A \cdot u) \cdot c^2$$

Einheit: 1 keV

9. Bestimmen Sie mit Hilfe der Tabelle im Anhang die mass excess - Werte von ⁷⁰Ge, ⁷⁰Ga und ⁷⁰Zn und vergleichen Sie die Werte. Welche Radioaktivitätseigenschaften von ⁷⁰Ga lassen sich ableiten?

⁷⁰Ge:
$$m_{exc} \cdot c^2 = -70563,111 keV$$

⁷⁰Ga: $m_{exc} \cdot c^2 = -68910,089 keV$

⁷⁰Zn:
$$m_{exc} \cdot c^2 = -70140,242 \, keV$$

Da die mass excess Werte für ⁷⁰Ge und ⁷⁰Zn kleiner sind als der Wert für ⁷⁰Ga, kann ⁷⁰Ga durch EC in ⁷⁰Zn und durch β⁻ Zerfall in ⁷⁰Ge zerfallen.

- **10.** Beschreiben Sie die Zerfallseigenschaften des ⁷⁰Ga anhand der Information in Anlage A1.
- 11. Welche Dicke müsste die Kapsel einer Strahlungsquelle aus Edelstahl haben, um die β-Strahlung einer darin enthaltenen Strahlenquelle des ⁷⁰Ga vollständig in der Kapsel absorbieren zu können? (Beachten Sie hierzu die Anlagen A1 und A2).
- 12. Bestimmen Sie die Bindungsenergie B(Z,A) und die Bindungsenergie pro Nukleon B(Z,A)/A von 70 Ga.

Masse des ⁷⁰Ga:
$$m(Z,A) = A \cdot u + m_{exc}(Z,A)$$
 (1)

Bindungsenergie:
$$B(Z, A) = Z \cdot m_H + (A - Z) \cdot m_p - m(Z, A)$$
 (2)

Einsetzen von (1) in (2):
$$B(Z, A) = Z \cdot m_H + (A - Z) \cdot m_n - A \cdot m_u - m_{exc}(Z, A)$$
 (3)

für
$$m_H$$
 und m_n gilt: $m_H = u + m_{exc.H}$ und $m_n = u + m_{exc.n}$. (4)

Setze (4) in (3):
$$B(Z,A) = Z \cdot \left(u + m_{exc,H}\right) + (A - Z) \cdot \left(u + m_{exc,n}\right) - A \cdot u - m_{exc}\left(Z,A\right)$$
Es folgt:
$$B(Z,A) = Z \cdot m_{exc,H} + N \cdot m_{exc,n} - m_{exc}\left(Z,A\right)$$

$$B(Z,A) = \left(31 \cdot 7,28897 + 39 \cdot 8,07132 - \left(-68,910089\right)\right) MeV$$

$$B(Z,A) = 609,649541 MeV$$

Bindungsenergie pro Nukleon:
$$\frac{B(Z,A)}{A} = \frac{609,649 \ MeV}{70} = 8,709 \ MeV$$

Welche exakte Masse hat ein einzelnes neutrales 70Ga Atom? Geben Sie das Ergebnis als **13.** Masse in der Einheit $1\frac{eV}{c^2}$ oder Vielfachen von $1\frac{eV}{c^2}$ und in der Einheit 1kg an.

Masse des ⁷⁰Ga
$$m(Z, A) = A \cdot u + m_{exc}(Z, A)$$

Exakt:
$$(70.931,494043 - (-68,910089))\frac{MeV}{c^2} = 65273,4931\frac{MeV}{c^2}$$

Umrechnung:
$$65273,4931 \frac{MeV}{c^2} \cdot \frac{1,66053886 \cdot 10^{-27} kg}{931,494043 \frac{MeV}{c^2}} = 1,163606 \cdot 10^{-25} kg$$

14. Berechnen Sie die Aktivitäten (a) von 1 kg Uran in natürlicher Isotopenzusammensetzung (siehe Nuklidkarte) und (b) von "abgereichertem Uran", das (näherungsweise) zu 100% aus dem Isotop ²³⁸U besteht und eine relative Atommasse von A_{rel} (²³⁸U) = 238 g mol⁻¹ besitzt.

Relative Atommasse von Uran in natürlicher Isotopenzusammensetzung:

$$A_{rel}(^{nat}U) = 238,02891 g \, mol^{-1}$$

Isotope des Uran:

²³⁴U:
$$T_{1/2} = 2,455 \cdot 10^5 a$$
 $\lambda_{234} = 8,94685 \cdot 10^{-14} s^{-1}$

²³⁵U:
$$T_{1/2} = 7,038 \cdot 10^8 a$$
 $\lambda_{235} = 3,12085 \cdot 10^{-14} s^{-1}$

²³⁸U:
$$T_{1/2} = 4,468 \cdot 10^9 a$$
 $\lambda_{238} = 4,91596 \cdot 10^{-14} s^{-1}$

Aktivität:
$$A = \frac{dN}{dt} = -\lambda \cdot N$$
 in 1 kg Natururan:

²³⁴U:
$$Atom\% = 0{,}0054$$
 $N_{234} = 1{,}36620 \cdot 10^{20}$ $A_{234} = 1{,}22232 \cdot 10^7 \, s^{-1}$

²³⁵U:
$$Atom\% = 0,7204$$
 $N_{235} = 1,82262 \cdot 10^{22}$ $A_{235} = 5,68810 \cdot 10^5 \,\text{s}^{-1}$

²³⁸U:
$$Atom\% = 99,2742$$
 $N_{238} = 2,51164 \cdot 10^{24}$ $A_{238} = 1,23471 \cdot 10^7 \, s^{-1}$

 $A_{natI} = 2,51391 \cdot 10^7 \, s^{-1}$ Gesamtaktivität des Natururan:

Abgereichertes Uran besteht nahezu aus reinem ²³⁸U.

Relative Atommasse ist näherungsweise:
$$A_{rel}(^{238}U) = 238 \, g \, mol^{-1}$$

Zahl der ²³⁸U Atome in der Masse 1 kg: $N_{238} = 2,53031 \cdot 10^{24}$ $A_{238} = 1,24389 \cdot 10^7 \, \text{s}^{-1}$ Aktivität von 1 kg abgereichertem Uran:

Wie groß war der relative Anteil des Isotops ²³⁵U im natürlichen Isotopengemisch von **15.** Uran vor 2 Milliarden Jahren, zum Zeitpunkt, als die Uranerzlagerstätten auf der Erde entstanden?

Verhältnis der Zahl der ²³⁵U Atome heute (N_{235U})zur Zahl der ²³⁵U Atome vor 2 10⁹ Jahren ($N_{0.235U}$).

$$\frac{N_{235U}}{N_{0.235U}} = e^{\frac{-\ln 2 \cdot 2.0 \cdot 10^9 \, a}{7.038 \cdot 10^8 \, a}} = 0.13949 = \frac{1}{7.1687}$$

Verhältnis der Zahl der ²³⁸U Atome heute (N_{238U})zur Zahl der ²³⁸U Atome vor 2 10⁹ Jahren ($N_{0.238U}$).

$$\frac{N_{238U}}{N_{0.238U}} = e^{-\frac{\ln 2 \cdot 2,0 \cdot 10^9 a}{4,46800 \cdot 10^9 a}} = 0,733247 = \frac{1}{1,36379}$$

Folgerung: Die Zahl der ²³⁵U Atome war vor 2 Milliarden Jahren um den Faktor 7,1587, die Zahl der ²³⁸U Atome um den Faktor 1,36379 höher. Da die Faktoren verschieden sind, verschieben sich die relativen Anteile. Heute hat ²³⁵U einen Anteil von 0,7205% Atom%, ²³⁸U von 99,2742%. Vor 2 10⁹ Jahren galt:

Atom% des ²³⁵U
$$0,7204\% \cdot \frac{0,7204 \cdot 7,1687}{0,7204 \cdot 7,1687 + 99,7742 \cdot 1,363795} = 3,674\%$$

Atom% des ²³⁸U $99,2742\% \cdot \frac{99,2742 \cdot 1,3637}{0,7204 \cdot 7,1687 + 99,7742 \cdot 1,363795} = 96,325\%$

Das radioaktive Isotop ⁷⁰Ga kann durch Kernreaktionen von nat. Ga (natürliche **16.** Isotopenmischung) mit Deuteriumionen hergestellt werden. Überlegen Sie anhand der Nuklidkarte, welche Reaktionsgleichungen bei Beschuss von nat. Gallium mit Deuteriumionen zur Erzeugung von ⁷⁰Ga möglich sind. Nennen Sie eine der möglichen Reaktionen und berechnen Sie deren Reaktionsenergie.

Natürliches Ga besteht zu 60,1% aus ⁶⁹Ga und zu 39,9% aus ⁷¹Ga. Folgende Reaktionen mit Deuterium $\binom{2}{1}H_1$) -Ionen führen zur Entstehung von ⁷⁰Ga:

$$Q = (m_{exc}(31,69) + m_{exc}(1,2) - m_{exc}(31,70) - m_{exc}(1,1)) \cdot c^{2}$$

$$Q = ((-69327,758) + 13135,72158 - (-68910,089) - 7288,9705) \cdot keV$$

 $Q = (+5429, 88) \cdot keV$ exotherm

$$Q = (m_{exc}(31,71) + m_{exc}(1,2) - m_{exc}(31,70) - m_{exc}(1,3)) \cdot c^{2}$$

$$Q = ((-70140,242) + 13135,72158 - (-68910,089) - 14949,806) \cdot keV$$

$$Q = (-3043,43) \cdot keV \quad \text{endotherm}$$

$$\begin{aligned} & {}^{71}_{31}Ga_{40} + {}^{2}_{1}H_{1} \to {}^{70}_{31}Ga_{39} + {}^{2}_{1}H_{1} + {}^{1}_{0}n_{1} \\ & Q = \left(m_{exc}(31,71) + m_{exc}(1,2) - m_{exc}(31,70) - m_{exc}(1,2) - m_{exc}(0,1)\right) \cdot c^{2} \\ & Q = \left(\left(-70140,242\right) + 13135,72158 - \left(-68910,089\right) - 13135,72158 - 8071,3171\right) \cdot keV \\ & Q = \left(-9300,66\right) \cdot keV \qquad \text{endotherm} \end{aligned}$$

$$\begin{split} &^{71}_{31}C_{40} + {}^{2}_{1}H_{1} \rightarrow {}^{70}_{31}Ga_{39} + {}^{1}_{1}H_{0} + 2 \cdot {}^{1}_{0}n_{1} \\ &Q = \left(m_{exc}(31,71) + m_{exc}(1,2) - m_{exc}(31,70) - m_{exc}(1,1) - m_{exc}(0,1) - m_{exc}(0,1)\right) \cdot c^{2} \\ &Q = \left(\left(-70140,242\right) + 13135,72158 - \left(-68910,089\right) - 7288,9705 - 2 \cdot 8071,3171\right) \cdot keV \\ &Q = \left(-11525,235\right) \cdot keV \quad \text{endotherm} \end{split}$$

17. Bei der Aktivierung des radioaktiven ⁷⁰Ga durch eine Kernreaktion wird eine Aktivität von 3,5 MBq erzeugt. Wie groß ist die Aktivität 1,5 Stunde nach dem Ende der Aktivierung?

Die Halbwertszeit des ⁷⁰Ga beträgt $T_{1/2} = 21,14m$, die Zeit t = 1,5h = 90m.

$$A(t) = A_0 \cdot e^{-\frac{\ln 2}{T_{1/2}} \cdot t}$$

$$A(t) = 3.5 MBq \cdot e^{-\frac{\ln 2}{21.14s} \cdot 90m} = 0.1830 MBq = 183 kBq$$

18. Erläutern Sie die Funktionsweise eines Kernreaktors und erläutern Sie in diesemZusammenhang insbesondere die Begriffe "neutroneninduzierte Spaltung", "stationäre Kettenreaktion", "Moderator" und "Spaltstoff". Welche Energie wird bei der Spaltung eines Uranatoms frei? Zum Vergleich: Welche Energie wird beim Verbrennen eines Kohlenstoffatoms zu Kohlendioxid frei?

19. Mit welchen Reaktionsgleichungen können Sie die α -, β --, β +- und EC-Radioaktivität beschreiben? Unter welchen Bedingungen tritt eine EC-Umwandlung, unter welchen Bedingungen ein β +-Zerfall auf?

$$\begin{array}{ll} \alpha \text{-Zerfall:} & \overset{_{A}}{_{Z}}E1_{N} \rightarrow \overset{_{A-4}}{_{Z-2}}E2_{N-2} + \frac{_{4}}{_{2}}He_{2} + Q_{\alpha} \\ \\ \beta^{-} \text{-Zerfall:} & \overset{_{A}}{_{Z}}E1_{N} \rightarrow \overset{_{A}}{_{Z+1}}E3_{N-1} + e^{-} + \overline{\nu} + Q_{\beta^{-}} \\ \\ \beta^{+} \text{-Zerfall:} & \overset{_{A}}{_{Z}}E1_{N} \rightarrow \overset{_{A}}{_{Z-1}}E4_{N+1} + e^{+} + \nu + Q_{\beta^{+}} \\ \\ EC \text{-Zerfall:} & \overset{_{A}}{_{Z}}E1_{N} + e^{-} \rightarrow \overset{_{A}}{_{Z-1}}E4_{N+1} + \nu + Q_{EC} \\ \\ Es \textit{muss gelten:} & Q_{EC} = Q_{\beta^{+}} + 1022 \textit{keV} \end{array}$$

20. In den drei natürlichen Zerfallsreihen von ²³⁵U, ²³⁸U und ²³²Th entstehen radioaktive Isotope des Elementes Radon. Welches Radonisotop aus diesen Zerfallsreihen hat die längste Halbwertszeit?

Zerfallsreihe des
$$^{238}U$$
: $^{222}Rn \ mit \ T_{1/2} = 3,825 \ s$

Zerfallsreihe des ²³⁵U: ²¹⁹Rn mit
$$T_{1/2} = 3.96 s$$

Zerfallsreihe des ²³²Th:
220
Rn mit $T_{1/2} = 55,6s$

Welche radioökologische Bedeutung haben die Radon-Isotope und deren Folgeprodukte?
Unter welchen Bedingungen können gesundheitliche Belastungen durch Radon und
Folgeprodukte auftreten?

Die Radonisotope und ihre Folgeprodukte erzeugen die Radioaktivität in der Atmosphäre. Die Luftradioaktivität kann auf Grund meteorologischer Einflüsse stark variieren. Es gibt starke geographische Variationen, die durch die Schwankung der radioaktiven Stoffe des Bodens entstehen. Gesundheitliche Belastungen entstehen bei hohen Anteilen von Uran und Thorium im Boden insbesondere in schlecht belüfteten Bergwerken und Kellern.

22. Beschreiben Sie die Eigenschaften einer Ionisationskammer, eines Proportionalzählrohrs und eines Geiger-Müller-Zählrohrs.

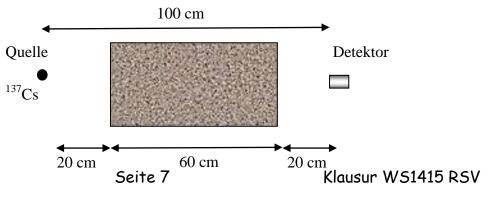
Bei einer Gasentladungsröhre entsteht bei sehr hohen Gasverstärkungen ein Plateau., h.h. die Gasverstärkung ist als Funktion der Speisespannung in einem geswissen Bereich näherungsweise konstant. Dieser Bereich wird Geiger-Müller-Bereich genannt. Ursache ist, dass die Ladungslawine keine Ladungsvermehrung mehr erzeugen kann, weil keine Atome mehr verfügbar sind.

23. In einem Vorlesungsversuch wurde die Schwächung von γ-Strahlung der Energie $E_{\gamma} = 662 \, keV \, \, (^{137}\text{Cs})$ in Blei untersucht.

Absorberdicke	$E_{\gamma} = 661,6 \text{ keV}$
<i>x</i> / cm	N / 10 s
1,2	2675
3,2	289

Die Untergrundzählrate betrug 17 Ereignisse in einer Messzeit von 10 s. Ohne Absorber wurden drei Messungen durchgeführt, die 9939, 9967, 10086, 10009 und 9820 Ereignisse in 10 s lieferten.

Bestimmen Sie den Schwächungskoeffizienten μ , den Massenschwächungskoeffizienten $\frac{\mu}{\rho}$ und den Wirkungsquerschnitt σ .


(Dichte Blei $\rho_{Al} = 11.3 \, g \, cm^{-3}$, rel. Atommasse: $A_{rel,Pb} = 207.2 \, g \, mol^{-1}$, Avogadro Zahl: $N_A = 6.0221415 \cdot 10^{-23} \, g \, mol^{-1}$)

Bestimmung von
$$\mu$$
:
$$\mu = \frac{\ln\left(\frac{N(z_2) - N_u}{N_0 - N_u}\right) - \ln\left(\frac{N(z_1) - N_u}{N_0 - N_u}\right)}{z_2 - z_1}$$

$$\mu = \frac{\ln\left(\frac{289 - 17}{9964, 2 - 17}\right) - \ln\left(\frac{2675 - 17}{9964, 2 - 17}\right)}{(3, 2 - 1, 2)cm} = -1,1398 cm^{-1}$$
Massenschwächungskoeffizient:
$$\frac{\mu}{\rho} = \frac{1,270 cm^{-1}}{11,3 g \ cm^{-3}} = 0,07181 cm^2 g^{-1}$$
Wirkungsquerschnitt:
$$\sigma = \frac{A_{rel}}{N_A} \left(\frac{\mu}{\rho}\right) = \frac{207,2 g \ mol^{-1}}{6,022 \cdot 10^{23} mol^{-1}} \cdot 1,1398 cm^2 g^{-1}$$

$$\sigma = \frac{A_{rel}}{N_A} \left(\frac{\mu}{\rho}\right) = 34,704 \cdot 10^{-24} \ cm^2 = 34,7b$$

24. Der Bestrahlungsbunker des Labors für Radioökologie und Strahlenschutz besitzt 60 cm dicke Betonwände. Betrachten Sie eine Anordnung, bei der eine Strahlenquelle des 137 Cs ($E_{\gamma}=661keV$) im Inneren des Bunkers in 20 cm Abstand vor der Wand positioniert wird und in einem Messpunkt außerhalb des Bunkers hinter der Betonwand im Abstand von 20 cm gemessen werden soll. Nach Strahlenschutzverordnung darf die Strahlungsdosisleistung außerhalb des Bunkers (auf Fluren und Gängen) $0,11~\mu$ Sv/h nicht überschreiten. Welche Dosisleistung darf die 137 Cs Strahlenquelle innerhalb des Bunkers im Abstand von 20 cm höchsten haben, damit der Grenzwert vor der Bunkerwand nicht überschritten werden kann?

E / MeV	(μ/ρ) / cm ² g ⁻¹	In(E)	$ln(\mu/\rho)$
6,000E-01	8,236E-02	-0,51082562	-2,4966554
8,000E-01	7,227E-02	-0,22314355	-2,62734617
6,610E-01	7,882E-02	-0,41400144	-2,54064155

Der Massenschwächungskoeffizient von Gammastrahlung der Energie $E_{\gamma} = 661 \, keV$ in

Beton ist:

$$\frac{\mu}{\rho} = 0.0788 \, cm^2 g^{-1}$$

Der Schwächungskoeffizient von Gammastrahlung der Energie $E_{\gamma}=661keV$ in Beton ist:

$$\mu = 0.0788 \, \text{cm}^2 \, \text{g}^{-1} \cdot 2.3 \, \text{g} \, \text{cm}^{-3} = 0.1813 \, \text{cm}^{-1}$$

Die Schwächung in der 60 cm Betonwand ist:

$$\frac{I(z)}{I_0} = \exp(-\mu \cdot z) = \exp(-0.1813 \, cm^{-1} \cdot 60 \, cm)$$
$$\frac{I(z)}{I_0} = 1.89 \cdot 10^{-5}$$

Die Quelle dürfte also im Abstand von 1 m (ohne Schwächung durch Absorber) eine Dosisleistung von:

$$\dot{H}(z=1m) = \frac{0.110 \frac{\mu S v}{h}}{1.89 \cdot 10^{-5}} = 5.82 \frac{mS v}{h}$$
 haben.

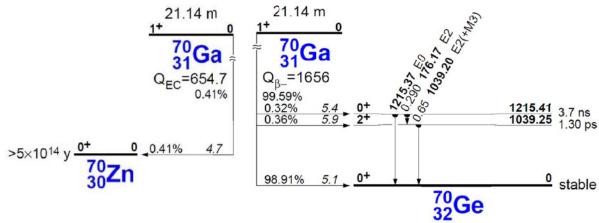
Die Dosisleistung in 20 cm ist $5^2 = 25$ mal höher:

$$\dot{H}(z=0,2m) = 5,82 \frac{mSv}{h} \cdot 25 = 146 \frac{mSv}{h}$$

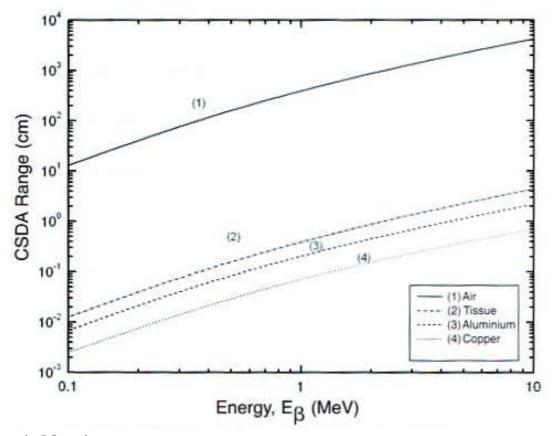
Wie groß ist die Halbwertsdicke von Beton für die γ-Strahlung des 137 Cs ($E_{\gamma} = 661 keV$)? Wie dick müsste eine Abschirmung aus Beton sein, um die Strahlungsintensität auf 1/10 (Zehntelwertsdicke) zu reduzieren?

Schwächungskoeffizient:

$$\mu = 1,813 \cdot 10^{-1} cm^{-1}$$


Halbwertsdicke:

$$d_{1/2} = \frac{\ln(2)}{\mu} = 3,823 \, cm$$


Zehntelwertsdicke:

$$d_{1/10} = \frac{\ln(10)}{\mu} = 12,7 \, cm$$

Anlage A1: Zerfallsschemata des ⁷⁰Ga

Anlage A2. Reichweite von β-

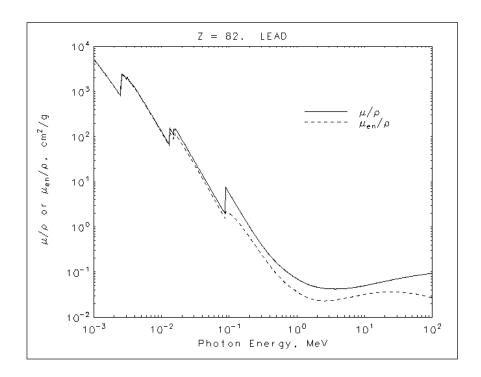
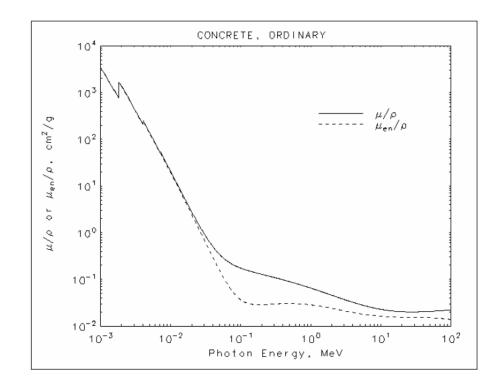

Strahlung in Materie

Abb.1 Reichweite (CSDA Range) von β-Strahlung in Materie.

Dichte: $\rho_{Air} = 1.293 \, kg \, m^{-3}$, $\rho_{Tissue} = 1,060 \, g \, cm^{-3}$, $\rho_{Al} = 2,699 \, g \, cm^{-3}$, $\rho_{Cu} = 8,960 \, g \, cm^{-3}$.


Anlage A3 Mass attenuation coefficient / Massenschwächungskoeffizient

E / MeV	(μ/ρ)
_,	cm ² g ⁻¹
	Blei
3,0E-02	3,032E+01
4,0E-02	1,436E+01
5,0E-02	8,041E+00
6,0E-02	5,021E+00
8,0E-02	2,419E+00
8,8E-02	1,910E+00
8,8E-02	7,683E+00
1,0E-01	5,549E+00
1,5E-01	2,014E+00
2,0E-01	9,985E-01
3,0E-01	4,031E-01
4,0E-01	2,323E-01
5,0E-01	1,614E-01
6,0E-01	1,248E-01
8,0E-01	8,870E-02
1,0E+00	7,102E-02
1,3E+00	5,876E-02
1,5E+00	5,222E-02
2,0E+00	4,606E-02
3,0E+00	4,234E-02
4,0E+00	4,197E-02
5,0E+00	4,272E-02
6,0E+00	4,391E-02
8,0E+00	4,675E-02
1,0E+01	4,972E-02

Dichte: $\rho_{Pb} = 11.3 \, g \, cm^{-3}$

E / MeV	(μ/ ho) / cm2/g
1,000E-02	2,045E+01
1,500E-02	6,351E+00
2,000E-02	2,806E+00
3,000E-02	9,601E-01
4,000E-02	5,058E-01
5,000E-02	3,412E-01
6,000E-02	2,660E-01
8,000E-02	2,014E-01
1,000E-01	1,738E-01
1,500E-01	1,436E-01
2,000E-01	1,282E-01
3,000E-01	1,097E-01
4,000E-01	9,783E-02
5,000E-01	8,915E-02
6,000E-01	8,236E-02
8,000E-01	7,227E-02
1,000E+00	6,495E-02
1,250E+00	5,807E-02
1,500E+00	5,288E-02
2,000E+00	4,557E-02
3,000E+00	3,701E-02
4,000E+00	3,217E-02
5,000E+00	2,908E-02
6,000E+00	2,697E-02
8,000E+00	2,432E-02
1,000E+01	2,278E-02
1,500E+01	2,096E-02

Dichte: $\rho_{Concrete} = 2.3 g \text{ cm}^{-3}$

 $\textbf{Quelle:}\ \underline{http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html}$

N =		0	1	2	3	4	5	6	7	8	9	10	11	12	N =	
n	0		8071,3171						B4		2 /	(7 A)	A * \ * - 2	in Iral/	n	0
Н	1	7288,9705	13135,72158	14949,806	25901,518	32892,44	41863,757	49135#	wass	excess =	$m_{\rm exc}c^2 = ($	m(Z,A) - A	A " U) "C	ın kev	Н	1
Не	2		14931,21475	2424,91565	11386,233	17595,106	26101,038	31598,044	40939,429	48809,203					He	2
Li	3	28667#	25323,185	11678,886	14086,793	14908,141	20946,844	24954,264	33050,581	40797,31	50096#				Li	3
Ве	4		37996#	18374,947	15770,034	4941,672	11347,648	12606,67	20174,064	25076,506	33247,823	39954,498	49798#	57678#	Ве	4
В	5		43603#	27868,346	22921,49	12415,681	12050,731	8667,931	13368,899	16562,166	23663,683	28972,278	37081,686	43770,816	В	5
С	6			35094,06	28910,491	15698,682	10650,342	0	3125,01129	3019,89305	9873,144	13694,129	21038,832	24926,178	С	6
N	7				38800,148	24303,569	17338,082	5345,481	2863,41704	101,43805	5683,658	7871,368	13114,466	15862,129	N	7
0	8					32047,954	23112,428	8007,356	2855,605	-4737,00141	-808,813	-781,522	3334,87	3797,462	0	8
F	9		Mass exces	se values	in keV		32658#	16775,372	10680,254	1951,701	873,701	-1487,386	-17,404	-47,551	F	9
Ne	10		Mass exec.	Jo Values	III KC V			23996,462	16460,901	5317,166	1751,44	-7041,93131	-5731,776	-8024,715	Ne	10
N =		0	1	2	3	4			24189,968	12926,808	6847,719	-2184,161	-5182,436	-9529,85358	Na	11
							5		33040,092	17570,348	10910,506	-396,963	-5473,766	-13933,567	Mg	12
N =		13	14	15	16	17		6		26119#	18183#	6769,57	-56,946	-8916,172	. Al	13
				u = 1,660	538 86 10	·27 kg	18		7	32164#	23772#	10754,673	3824,318	-7144,632	Si	14
В	5	52322#	59364#	$uc^2 = 931$,494 043 N	1eV		19		8	31997#	18872#	10973#	-717,03	Р	15
С	6	32420,666	37557,61	45960#	53281#	•			20		9	25970#	17543#	4073,203	S	16
N	7	21765,11	25251,164	32038,675	38396#	47543#	56504#			21		10	26557#	13143#	CI	17
0	8	8062,906	9284,152	14612,96	19070,4	27442#	35713#	44954#	53850#		22		11	20083#	Ar	18
F	9	2793,378	3329,747	7559,527	11272,706	18271,772	24926,86	33226#	40296#	48903#	56289#	23	24	12	N =	igsqcut
Ne	10	-5154,045	-5951,521	-2108,075	429,611	7069,949	11244,601	18057,881	23102,025	30842#	37278#	45997#	53121#	25	N =	Ш
Na	11	-8418,114	-9357,818	-6862,316	-5517,436	-989,247	2665,004	8361,09	12654,768	19064,478	24889,293	32761#	39582#	47953#	_	11
Mg	12	-13192,826	-16214,582	-14586,651	-15018,641	-10619,032	-8910,672	-3217,38	-954,781	4894,07	8808,603	16152#	21424#	29249#	Mg	12
Al	13	-12210,309	-17196,658	-16850,441	-18215,322	-15872,419	-14953,628	-11061,966	-8529,377	-2932,495	-130,19	5781,974	9946,326	16050,594	Al	13
Si	14	-12384,301	-21492,79678	-21895,046	-24432,928	-22949,006	-24080,907	-20492,662	-19956,77	-14360,307	-12482,507	-6579,998	-4067,274	1928,205	_	
Р	15	-7158,753	-16952,626	-20200,575	-24440,885	-24305,218	-26337,486	-24557,669	-24857,74	-20250,977	-18994,145	-14757,82	-12873,735	-8106,838	P	15
S	16	-3159,582	-14062,532	-19044,648	-26015,697	-26585,994	-29931,788	-28846,356	-30664,075	-26896,36	-26861,197	-23162,245	-22866,568	-19019,105	_	
CI	17	4443#	-7067,165	-13329,771	-21003,432	-24439,776	-29013,54	-29521,857	-31761,532	-29798,097	-29800,203	-27557,81	-27307,189	-24912,99	CI	17
Ar	18	11293#	-2200,204	-9384,141	-18377,217	-23047,411	-30231,54	-30947,659	-34714,551	-33242,011	-35039,89602	-33067,467	-34422,675	-32009,808	Ar	18
K	19	20418#	6763#	-1481#	-11168,9	-17426,171	-24800,199	-28800,691	-33807,011	-33535,205	-35559,074	-35021,556	-36593,239	-35809,606	+	_
Ca	20		13153#	4602#	-6439,359	-13161,76	-22059,22	-27274,4	-34846,275	-35137,759	-38547,072	-38408,639	-41468,479	-40811,95		
Sc	21			13898#	2841#	-4937#	-14168,021	-20523,228	-28642,392	-32121,239	-36187,929	-37816,093	-41067,792	-41757,115	Sc	
Ti	22				9101#	1500#	-8850,275	-15700#	-25121,552	-29321,103	-37548,459	-39005,737	-44123,422	-44932,394	Ti	22
V	23					10330#	-205#	-8169#	-18024#	-24116,38	-31879,629	-37073,013	-42002,051	-44475,385	V	23
N =		13	14	15	16	17	18	19	20	21	22	23	24	25	N =	

Anlage 4: Mass Excess Table: G. Audi, A.H. Wapstra and C. Thibault, http://ie.lbl.gov/mass/2003AWMass_3.pdf

N =		26	27	28	29	30	31	32	33	34	35	36	37	38	N =	
Cr	24	-50259,499	-51448,807	-55416,933	-55284,741	-56932,545	-55107,491	-55281,245	-52524,14	-51834,726	-47891,49	-46503,876	-42180,653	-40414,553	Cr	24
Mn	25	-48241,341	-50705,444	-54687,904	-55555,37	-57710,58	-56909,71	-57486,8	-55906,827	-55479,562	-53177,832	-51555,736	-48038,804	-46351,151	Mn	25
Fe	26	-48331,615	-50945,323	-56252,456	-57479,368	-60605,352	-60180,13	-62153,418	-60663,114	-61411,832	-58921,391	-58900,749	-55545,834	-54770,668	Fe	26
Co	27	-42644,824	-48009,541	-54027,557	-56039,352	-59344,204	-59845,868	-62228,412	-61649,012	-62898,422	-61431,505	-61840,387	-59792,686	-59169,934	Со	27
Ni	28	-39210,779	-45335,579	-53903,674	-56081,969	-60227,694	-61155,65	-64472,079	-64220,892	-66746,096	-65512,556	-67099,277	-65126,052	-66006,285	Ni	28
Cu	29	-31624#	-38601#	-47309,576	-51662,055	-56357,224	-58344,099	-61983,64	-62797,837	-65579,531	-65424,243	-67263,661	-66258,274	-67318,779	Cu	29
Zn	30	-25728#	-32800#	-42297,694	-47260,499	-54187,768	-56345,48	-61171,431	-62213,025	-66003,595	-65911,599	-68899,427	-67880,441	-70007,22	Zn	30
Ga	31	-15901#	-23986#	-34121#	-39998#	-47090,48	-52000,431	-56547,093	-58834,328	-62657,173	-63724,427	-66879,683	-67086,12	-69327,758	Ga	31
Ge	32	-8374#	-17000#	-27768#	-33729#	-42243#	-46910#	-54349,881	-56414,625	-61624,427	-62657,81	-66979,785	-67100,605	-70563,111	Ge	32
			-6399#	-18052#	-24964#	-33823#	-39521#	-46981#	-51502,304	-56647,81	-58899,233	-63086,666	-64343,111	-67894,336	As	33
N =		26	27	28	29	30	-32919#	-41722#	-46491#	-54214,814	-56301,531	-62046,216	-63116,336	-67894,407	Se	34
							31	-32798#	-38642#	-46476#	-51426#	-57063,323	-59015,201	-63628,936	Br	35
N =		39	40	41	42	43		32	-32435#	-41676#	-46923,323	-53940,919	-56551,751	-62331,509	Kr	36
							44		33	-32304#	-38117#	-46052#	-51917,05	-57221,677	Rb	37
Cr	24	-35527#	-33152#	-27796#	-24796#	-19049#		45		34	-31699#	-40697#	-46621,677	-54243,893	Sr	38
Mn	25	-42616,698	-40672,693	-36254#	-33403#	-28597#	-25299#		46		35		-38704#	-46905#	Υ	39
Fe	26	-50877,951	-49573,517	-45692,348	-43128,173	-38396#	-35900#	-31000#	-28299#	47	48	36	37	-41703#	Zr	40
Co	27	-56111,332	-55061,049	-51350,415	-50002,598	-45643,206	-43873,368	-39300#	-37036#	-32248#	-29500#	49	50	38	N =	
Ni	28	-63742,68	-63463,815	-59978,648	-59149,87	-55203,797	-53940,319	-49863#	-48372#	-43901#	-41610#	-36747#	-34298#	51	N =	
Cu	29	-65567,035	-65736,213	-62976,127	-62711,127	-59782,999	-58986,595	-56006,205	-54119,802	-50975,985	-48577#	-44749#	-42327#	-36449#	Cu	29
Zn	30	-68417,973	-69564,648	-67326,897	-68131,38	-65410,343	-65708,883	-62469,023	-62136,64	-58722,344	-57342,57	-53420#	-51844,769	-46128#	Zn	30
Ga	31	-68910,089	-70140,242	-68589,38	-69699,335	-68049,585	-68464,58	-66296,64	-65992,344	-63706,57	-62509,526	-59135,169	-57983,308	-53104#	Ga	31
Ge	32	-69907,736	-72585,911	-71297,534	-73422,437	-71856,427	-73213,046	-71214,029	-71862,211	-69488,526	-69515,169	-66303,308	-65624,008	-60901#	Ge	32
As	33	-68229,809	-70956,701	-70859,967	-73032,41	-72289,504	-73916,577	-72817,419	-73636,526	-72159,286	-72533,308	-70324,008	-69880,657	-66082#	As	33
Se	34	-68217,642	-72212,735	-72169,018	-75252,05	-74599,594	-77026,086	-75917,602	-77759,936	-76389,519	-77594,008	-75340,657	-75951,829	-72428,267	Se	34
Br	35	-65306,081	-69139,018	-70289,169	-73234,914	-73452,302	-76068,514	-75889,472	-77974,839	-77496,465	-79008,93	-77799,335	-78610,267	-75639,57	Br	35
Kr	36	-64323,624	-69014,318	-70169,443	-74179,727	-74442,736	-77892,492	-77694,038	-80589,508	-79981,709	-82430,991	-81480,267	-83265,57	-80709,426	Kr	36
Rb	37	-60479,832	-64824,531	-66936,228	-70803,362	-72172,854	-75454,821	-76188,201	-79074,805	-79750,025	-82167,331	-82747,017	-84597,795	-82608,998	Rb	37
Sr	38	-57804,063	-63173,924	-65476,577	-70308,223	-71527,705	-76008,384	-76795,439	-80643,837	-81102,572	-84523,576	-84880,413	-87921,74	-86209,141	Sr	38
Υ	39	-52527#	-58356,577	-61217,786	-66017,338	-68192,393	-72326,557	-74157,855	-77842,123	-79283,576	-83018,723	-84299,14	-87701,749	-86487,462	Y	39
Zr	40	-47357#	-55517,043	-58488,484	-64192#	-66458,557	-71492#	-73149,123	-77804,35	-79348,15	-83623,101	-84868,884	-88767,265	-87890,402	Zr	40
Nb	41		-47478#	-52974#	-58958,557	-61879#	-67149,123	-69826,35	-74183,15	-76073,101	-80650,386	-82656,265	-86632,442	-86448,337	Nb	41
	40		Mass evens	-47748#	-55806#	-59103#	-64556,35	-67694,927	-72700,088	-75003,889	-80167,265	-82204,165	-86805,003	-86803,495	Мо	42
Мо	42		Mass excess	-41140#	-00000#	-09100#	-04000,00	-07034,327	-12100,000	70000,000	00107,200	-02204,103	-00000,000	00000,400		
Mo Tc	43		values in keV	-47740#	-47665#	-53207#	-59122#	-62710#	-67844#	-71206,603	-75984,165	-78934,648	-83602,533	-84153,961	Тс	