Calculation of Cosmic Radiation Exposure of Aircrew: PCAIRE Code

B.J. Lewis, L.G.I. Bennett
with
A.R. Green, M.J. McCall,
M. Pierre, B. Ellaschuk and A. Butler

Royal Military College of Canada

Air Crew Radiation Protection Symposium
Hannover, Germany
February 28, 2002
Outline

- Cosmic Radiation Considerations
- Cosmic Radiation Study
- PCAIRE Model & Code
 - Demonstration
- PCAIREsys Development
 - Demonstration
Cosmic Radiation Considerations

- Relatively constant radiation field:
 1. Solar Activity
 2. Latitude
 3. Altitude

- Complicated
 - Many particle types, large energy range
 - High quality factor & biological risk

- Other
 - Radiation measurements +/- 20%
 - Canadian & EU regulations similar
1. Solar Activity

Radiation intensity anticoincident with 11-year solar cycle

Difficult to model due to non-uniformity
2. Latitude

- Earth’s magnetic field
- Greater shielding at equator than geomagnetic poles (factor of 2-3)
- Levels off at Geomagnetic Knee, ~50°
3. Altitude

Radiation field is higher at jet altitudes (factor of 100)
Cosmic Radiation Study (1991-2002)

- **Surveys**
 - Air Force, 6 Canadian Airlines
 - Neutron Bubble Detector

- **Experimentation**
 - 62 Flights (Portable Instruments)
 - Tissue Equivalent Proportional Counter (TEPC)
 - Ionization Counter (low-LET)/TLDs + Remmeter/Bubble Detector (high-LET)

- **Code Development**
 - Predictive Code - Aircrew Radiation Exposure (PC-AIRE)
Equipment Suite Development

- MNS
- LET Chamber
- NE213 Scintillator
- LLRM
- Detector NIMs, Computers, UPS
- BGO Scintillators
- Anthropomorphic Phantom with TLDs and BDs
Equipment Suite Development
Equipment Suite Development

- Tissue Equivalent Proportional Counter
- Bubble Detectors and TLD's under Foam
Dose Equivalent Distribution (μSv)

TOTAL DE = IONIZING + NEUTRON
Data Coverage
TEPC Data Analysis (36 Flights)

Geomagnetic latitude calculated from geographic latitude & longitude

Data plotted digitally from equator to poles

Affected by difference in geographical & geomagnetic poles
Dose Rate Vs Cutoff Rigidity

Dose equivalent rate (35000 ft, 650 MV)

- Better way of digitally plotting data & thus providing a function

GCR ability to penetrate magnetic field
Solar Cycle Effects

TEPC data for 2 sets of measurements near max & min of solar cycle

2 corresponding functions, f_1 & f_2 adjust for solar cycle

Ongoing measurements
Altitude Effects

Atmospheric Depth (g cm$^{-2}$)

Balloon Data (July 14, 2001)
Balloon Data (July 23, 2001)
Model

$(\xi_s)_{GCR} = 0.0068$ cm2 g$^{-1}$

Function adjusted for altitude
PCAIRE Code Demonstration
(Single Entry)
Model and Code Validation

PTB Data and LUIN Code

26 Independent TEPC Route Dose Data
Code Development: PCAIRESys

- Operational environment:
 - Management system for large number of personnel and flights
PCAIRESys Features

- **Platforms:**
 - Standalone application (personal PC/Web access)
 - Kernel incorporated into airline personnel database
 - Data treatment centre
 - Web/LAN batch processing/Airline database interface

- **Functionality:**
 - Single flight entry or batch file processing
 - Query by flight, crew, occupation or date
 - Great circle route or way points
 - Secure access
PCAIRESys Demonstration
(Multiple entry)

- Create an organization
- Create an administrator for the organization
- Enter users
- Enter one flight by city pair
- Enter batch flights (show one file that works and modify slightly)
- Enter batch flight by way point (take a small file)
- Query
 - By admin for one year
 - By admin for one crew
- Log out and log on as user, and query by quarter, then year, then flight
Summary

- Research over a decade
 - Surveys, Experimentation, Modelling
 - Measurements continuing
 - PCAIRE Code development
 - Experimentally-based (TEPC data) PCAIRE Code
 - PCAIREsys Code for batch aircrew exposure calculation
 - Canadian air force, Canadian-based airlines
Acknowledgements

- Management, Employees and Unions of Air Canada, Canada 3000 Airlines, Canadian Airlines International, Canadian Regional Airlines & First Air
- 1 Canadian Air Division, Air Operations at 8 Wing Trenton, 437/436/429 Squadrons
- J. Servant (Transport Canada), and C. Thorp and S. Kupca (DGNS/DND)
- J. Lafortune & F. LeMay (PCAIRE Inc)